Improving Team’s Consistency of Understanding in Meetings
Title
Improving Team’s Consistency of Understanding in Meetings
Publication Type
Authors
Upon concluding a meeting, participants can occasionally leave with different understandings of what had been discussed. Detecting inconsistencies in understanding is a desired capability for an intelligent system designed to monitor meetings and provide feedback to spur stronger shared understanding.
In this paper, we present a computational model for the automatic prediction of consistency among team members' understanding of their group's decisions. The model utilizes dialogue features focused on the dynamics of group decision-making. We trained a hidden Markov model using the AMI meeting corpus and achieved a prediction accuracy of 64.2%, as well as robustness across different meeting phases. We then implemented our model in an intelligent system that participated in human team planning about a hypothetical emergency response mission. The system suggested topics that the team would derive the most benefit from reviewing with one another. Through an experiment with 30 participants, we evaluated the utility of such a feedback system, and observed a statistically significant increase of 17.5% in objective measures of the teams' understanding compared with that obtained using a baseline interactive system.